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[1] We consider the problem of testing for homogeneity of variance in a time series with long
memory structure.We demonstrate that a test whose null hypothesis is designed to be white noise can,
in fact, be applied, on a scale by scale basis, to the discrete wavelet transform of long memory
processes. In particular, we show that evaluating a normalized cumulative sum of squares test statistic
using critical levels for the null hypothesis of white noise yields approximately the same null
hypothesis rejection rates when applied to the discrete wavelet transform of samples from a
fractionally differenced process. The point at which the test statistic, using a nondecimated version of
the discrete wavelet transform, achieves its maximum value can be used to estimate the time of the
unknown variance change. We apply our proposed test statistic on five time series derived from the
historical record of Nile River yearly minimum water levels covering 622–1922 A.D., each series
exhibiting various degrees of serial correlation including long memory. In the longest subseries,
spanning 622–1284 A.D., the test confirms an inhomogeneity of variance at short time scales and
identifies the change point around 720 A.D., which coincides closely with the construction of a new
device around 715 A.D. for measuring the Nile River. The test also detects a change in variance for a
record of only 36 years. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869
Hydrology: Stochastic processes; 3299 Mathematical Geophysics: General or miscellaneous;
KEYWORDS: wavelets, time series, change point, Nile River, multiresolution, variance

In spite of all the changing, uncertain, and erroneous factors that

must be considered in connection with records of stages of the Nile

River, it is believed that they disclose some important information;

and there is a fair prospect that they may yield more data with

further study and the cumulation of ideas of various students.

Jarvis [1936, p. 1028]

1. Introduction

[2] The words of Jarvis [1936] are very prophetic, for, in fact,

data collected from the Nile River have spurred the development of

a whole field of mathematics (i.e., fractional Brownian motion and

fractional Gaussian noise) along with a field of statistics concerned

with the behavior of long memory time series. Gathered by

Toussoun [1925], there exists a remarkable hydrological time series

of minimum and maximum water levels for the Nile River. Starting

in 622 A.D. and ending in 1922 A.D., the first missing observation

in the annual minima occurs in 1285 A.D. This leaves us with

several continuous records to analyze; the longest one (663 years)

is shown in Figure 1.

[3] A reasonable amount of literature has been written about

Toussoun’s [1925] Nile River data. Some notable facts are pro-

vided here. The minimum water levels for the Nile River are not

actually the yearly minima. These values were recorded around the

end of June each year, whereas the maximum water levels were the

actual yearly maxima [Popper, 1995] even though Brooks [1949,

p. 329] notes that the lowest levels of the Nile occur in April and

May with erratic behavior in June and the beginning of July.

Various time domain and spectral domain methods have been used

to analyze these data. Given the current state of knowledge about

this process and its apparent long memory structure, these past

results will largely be ignored.

[4] A brief history of the beginning portion of Toussoun’s

[1925] record (622–1284 A.D.) is provided here. Although long-

range dependence was initially discovered in the Nile River series

by Hurst [1951], statistical modeling of this time series was first

done as a self-similar process in terms of a fractional Gaussian

noise (FGN) model [Mandelbrot and van Ness, 1968; Mandelbrot

and Wallis, 1969] in the doctoral works of Mohr [1981] and Graf

[1983]. This time series model is briefly discussed in section 2.

Both Mohr and Graf used the Fourier transform to estimate the

self-similarity parameter of an FGN model. Graf [1983] reported

estimates of H = d + 1/2 between 0.83 and 0.85, where H is the so-

called Hurst parameter for an FGN model. Beran [1994, p. 118]

has reported estimates of H = 0.84 for FGN and H = 0.90 for a

realization of a fractionally integrated autoregressive, moving

average (ARFIMA) model with 95% confidence intervals of

(0.79, 0.89) and (0.84, 0.96), respectively. He also established a

goodness-of-fit test for the spectral density function of a long

memory process. An approximate p value for the FGN model of

the yearly minimum water levels of the Nile River is 0.70, meaning

that FGN appears to fit the spectral density function of the Nile

River series well.

[5] An important assumption behind any stationary process is

that its variance is a constant independent of the time index t. Time

series models based on real data may be used to simulate the

process and test, for example, hydrological systems. The impact on

equipment and the population therefore depends on an accurate
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depiction of the true process. The adequacy of any particular time

series model may be compromised by nonstationary behavior.

From Figure 1 it is apparent that the first 100 or so observations

(before the vertical dotted line) exhibit more variability than the

remaining 563. Although visually striking, this apparent change in

variance occurs in the presence of long-range dependence. In the

context of short memory models, such as stationary autoregressive

moving average (ARMA) processes [Box and Jenkins, 1976], a

number of methods have been proposed for testing homogeneity of

variance. For a time series consisting of either independent

Gaussian random variables with zero mean and possibly time-

dependent variances st
2 or a moving average of such variables,

Nuri and Herbst [1969] proposed to test the hypothesis that st
2 is

constant for all t by using the periodogram of the squared random

variables. Wichern et al. [1976] proposed a moving-block proce-

dure for detecting a single change of variance at an unknown time

point in an autoregressive model of order one. Hsu [1977, 1979]

looked at detecting a single change in variance at an unknown

point in time in a series of independent observations.

[6] Davis [1979] studied tests for a single change in the

innovations variance at a specified point in time in an autore-

gressive (AR) process. Abraham and Wei [1984] used a Baye-

sian framework to study changes in the innovation variance of

an ARMA process. Tsay [1988] looked at detecting several types

of disturbances in time series, among them variance changes, by

analyzing the residuals from fitting an ARMA model. Inclán

and Tiao [1994] investigated the detection of multiple changes

of variance in sequences of independent Gaussian random

variables by recursively applying a cumulative sum of squares

test to pieces of the original series. Recently, Perreault et al.

[2000] used Bayesian methods to detect and locate variance

changes in sequences of independent Gaussian random variables

with application to hydrometeorological time series.

[7] The test we propose, to be discussed in section 4, may be

regarded as an adaptation of the work of Hsu [1977, 1979] and

Inclán and Tiao [1994] to handle long memory processes, but,

except for the tests with a null hypothesis of white noise with

constant variance, it is not an easy matter to adapt the other tests.

As noted by Tang and MacNeill [1991], serial correlation can

produce striking effects in the distributions of change-point sta-

tistics. Testing processes with spectral density functions (SDFs)

dominated by low-frequency content, like those associated with

long memory processes, increases the type 1 error rate, that is, the

null hypothesis of no change in the parameter of interest is rejected

more often than expected when, in fact, no change has occurred.

Tang and MacNeill [1991] go on to develop an ‘‘adjustment’’ for

their test statistic on the basis of the SDF of a process with

absolutely summable autocovariances. Change points in the mean

level and serial correlation of annual discharges of the Nile River at

Aswan are investigated by MacNeill et al. [1991]. Since long

memory processes do not have absolutely summable autocovar-

iances, this approach is not applicable here.

[8] A key assumption behind several of the tests proposed

previously is accurately fitting a parametric model (e.g., ARMA

process) to the observed time series. An incorrect specification

of the statistical model may lead to erroneous judgments of

variance change points when analyzing the residuals. We avoid

this model-fitting step by testing the coefficients from a multiscale

decomposition of the original time series. By first applying this

decomposition, we may apply a relatively simple testing procedure

to a wide range of stochastic processes without committing to a

particular time series model. Each level of the decomposition is

associated with a specific frequency range in the original process.

Although we are not testing observations from this process directly,

hypothesis testing results from each level of the decomposition

may be directly associated with features in the original process. For

example, variance changes in lower levels of the decomposition

correspond with higher frequencies in the original process and

imply a change of variance. If a variance change was detected at

higher levels of the decomposition, this would imply a change in

the low-frequency or long memory content of the original process.

The multiscale decomposition removes the serial correlation of a

long memory process and allows us to test for a variety of

departures from stationarity.

[9] Specifically, in this paper we demonstrate how the discrete

wavelet transform (DWT) may be used to construct a test for

homogeneity of variance in a time series exhibiting long memory

characteristics. The DWT is a relatively new tool for time series

analysis but has already proven useful for investigating other types

of nonstationary events. For example, Wang [1995] tested wavelet

coefficients at fine scales to detect jumps and sharp cusps of signals

embedded in Gaussian white noise, and Ogden and Parzen [1996]

used wavelet coefficients to develop data-dependent thresholds for

removing noise from a signal. The key property of the DWT that

makes it useful for studying possible nonstationarities is that it

transforms a time series into coefficients that reflect changes at

various scales and at particular times. For fractional difference

(FD) and related long memory processes the wavelet coefficients

for a given scale are approximately uncorrelated (see, for example,

Tewfik and Kim [1992], McCoy and Walden [1996], Wornell

[1996], and our discussion in section 4.2). We show here that this

approximation is good enough that a test designed for a null

hypothesis of white noise may be used for testing homogeneity

of variance in a long memory process on a scale by scale basis. An

additional advantage of testing the output from the DWT is that the

scale at which the inhomogeneity occurs may be identified. Using

a variation of the DWT, we also investigate an auxiliary test

statistic that can estimate the time at which the variance of a time

series changes.

[10] While we will concentrate on FD processes in order to

validate our proposed homogeneity of variance test, in fact, our test

is by no means limited to just these processes. The key to the

methodology proposed here is the decorrelation property of the

DWT, which can be verified for other processes by using

equation (40) and by comparing the results with Table 3.

Alternatively, the DWT yields an octave band decomposition

of the spectrum, that is, the DWT partitions the spectrum of a

process such that the wavelet coefficients are associated with

disjoint frequency intervals f 2 [1/2 j+1, 1/2 j] for j = 1, 2, . . ..
We can expect the decorrelation property of the DWT to hold

for level j wavelet coefficients as long as there is relatively little

change in the spectrum of the process over the frequency

interval [1/2 j+ 1, 1/2 j], as is true for FD processes. Other

Figure 1. Nile River minimum water levels for 622–1284 A.D.
The vertical dotted line is at 730 A.D.
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processes for which the decorrelation property holds include

first-order AR processes with nonnegative lag one autocorrela-

tions, FGN, stationary long memory power law processes, and

certain ARFIMA processes (i.e., extensions to FD processes that

do not exhibit rapid variations within octave bands). Loosely

speaking, the spectrum of the process must increase as fre-

quency approaches 0 and must not vary too much within the

specified frequency intervals.

[11] An outline of the remainder of this paper is as follows: A

review of long memory processes, such as FD processes, FGN, and

pure power law processes, is provided in section 2. Section 3

provides a brief introduction to the DWT and points out some key

properties we use later on. Section 4 defines the test statistic for

detecting sudden changes of variance in a sequence of independent

Gaussian random variables, summarizes some simulation results

for the DWT of FD processes, and applies our proposed test to five

time series from the historical record of Nile River minimum water

levels. Section 5 introduces a procedure for determining the

location of a variance change, presents simulation results for FD

processes with a known variance change, and demonstrates the

procedure using the Nile River data. Section 6 gives some

concluding remarks.

2. Time Series Models for Long
Memory Processes

[12] Long memory structure in a stationary process may be

characterized via the autocovariance sequence, or equivalently,

its spectral density function. To be more precise, we say that Yt
is a stationary long memory process if there exists a real number

�1 < a < 0 and a constant CS > 0 such that

lim
f!0

SY fð Þ
CS fj ja ¼ 1 ð1Þ

[Beran, 1994, p. 42]. Given the equivalence of the autocovariance

sequence and SDF for covariance stationary processes, an

alternative formulation of equation (1) is possible in terms of its

autocovariance sequence SY,t. We say that Yt is a stationary long

memory process if there exists a real number �1 < b < 0 and a

constant Cs > 0 such that

lim
t!1

sY ;t

Cstb
¼ 1 ð2Þ

[Beran, 1994, pp. 42–43]. These two definitions form a basis for

describing long memory structure in observed time series. Low

frequencies in the spectrum, corresponding to oscillations with

longer and longer periods, exhibit increasing strength inversely

proportional to frequency. This corresponds to a slow rate of decay

in the autocovariance sequence, and thus observations separated by

long time spans still exhibit nonnegligible covariance.

[13] Suppose we have a time series that we are considering to

model as a realization of one portion Y0, . . ., YN�1 of a Gaussian

fractionally integrated autoregressive, moving average (ARFIMA)

process Yt. Typically, there are three parameters used to character-

ize the ARFIMA process ( p, d, and q). The first parameter p

indicates how many autoregressive terms are present, the second

parameter d determines the degree of integration, and the third

parameter q indicates how many moving average terms are

included. For our purposes here, assume p = q = 0 and that d is

allowed to be any positive real number; then the ARFIMA process

is the so-called fractionally differenced process. This process may

be represented as

Yt ¼
X1
k¼0

� k þ dð Þ
� k þ 1ð Þ� dð Þ et�k ; ð3Þ

where �1/2 < d < 1/2, and et is a Gaussian white noise process

with mean zero and variance se
2. The SDF for this process is given

by

SY fð Þ ¼ s2e
2sin pfð Þj j2d

for fj j 
 1

2
; ð4Þ

while its autocovariance sequence sY,t may be obtained using the

recursion

sY ;t ¼ sY ;t�1

tþ d � 1

t� d
; t ¼ 1; 2; :::; ð5aÞ

sY ;0 ¼
s2e� 1� 2dð Þ
�2 1� dð Þ ð5bÞ

(for t < 0 we have sY,t = sY,�t). When 0 < d < 1/2, the SDF has a

singularity at 0, in which case the process exhibits slowly decaying

autocovariances and constitutes a simple example of a stationary

long memory process according to Beran [1994] [see also Granger

and Joyeux, 1980; Hosking, 1981]. In this case, d is called the long

memory parameter. Figure 2 displays several examples of spectra

from FD processes with 0 < d < 1/2. When plotted on a log-log

scale, the SDFs are linear for frequencies 0 < f < 1/4.

[14] Another popular model for a long memory process is

fractional Gaussian noise, introduced by Mandelbrot and van Ness

[1968] and more recently investigated by Molz et al. [1997].

Suppose that Y0, . . .,YN�1 is one portion of an FGN; then it is a

stationary process with autocovariance sequence given by

sY ;t ¼
s2Y
2

tþ 1j j2H � 2 tj j2H þ t� 1j j2H
� �

; ð6Þ

t = 0, ±1, ±2, . . ., where sY
2 > 0 is the variance of the process and

0 < H < 1 is the Hurst parameter. The spectrum of an FGN may be

derived from an appropriately filtered SDF of fractional Brownian

motion and evaluated via numeric integration, although finite-term

approximations may be used in practice. When H = 1/2, an FGN is

equivalent to a white noise process with sY,t = 0 for |t| > 0. When

1/2 < H < 1, Yt satisfies equation (2) and constitutes an example of

a long memory process. A third example a stationary long memory

process is a pure power law (PPL) process and is defined by

appealing to equation (1) directly. Its SDF has the form

SY fð Þ ¼ CS fj ja; for fj j 
 1

2
; ð7Þ

where CS > 0 and is linear for all | f | 
 1/2. When �1 < a < 0, the

PPL process is stationary and obviously obeys equation (1).

[15] All three models presented here are similar in the fact that

they are characterized by two parameters: one for the exponent of the

power law across frequencies, and the second concerns the variance

of the process. Careful choice of both parameters allows one to

produce SDFs with almost identical features for all three models. In

spite of these similarities, FD processes have several advantages:

1. Both the SDF and (autocovariance sequence) for an FD

process are easy to compute.
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2. There is a natural extension to FD processes to cover

nonstationary processes with stationary backward differences.

3. An FD process may be considered a special case of an

autoregressive, fractionally integrated, moving average process,

which involves additional parameters that allow flexible modeling

of high-frequency content of a time series.

[16] For these reasons the FD process is the model of choice,

being used to describe the ability of the DWT to decorrelate a long

memory process (section 3.2) and in all simulation studies pro-

vided here.

3. Discrete Wavelet Transforms

[17] The orthonormal discrete wavelet transform has been

successfully applied to time series analysis in geophysics because

of its ability to separate variability across timescales [see, e.g.,

Kumar, 1996; Kumar and Foufoula-Georgiou [1997]; Whitcher

et al., 2000a]. The DWT is a way of decomposing a time series into

coefficients associated with time and a specific frequency band

(usually called a scale). The discrete Fourier transform, on the other

hand, decomposes a time series into coefficients associated with a

Fourier frequency and no time information. In one sense the discrete

Fourier transform concentrates on frequency resolution while the

DWT gives up frequency resolution in order to gain some time

resolution. We utilize the ability of the DWT to isolate features local

in both time and scale in order to capture specific nonstationarities.

We are strictly interested in discrete time series and therefore restrict

ourselves exclusively to the DWT. Introductions to the continuous

wavelet transform and its relation to the DWT are given by, e.g.,

Chui [1997] and Mallat [1998].

3.1. The Discrete Wavelet Transform

[18] Let h1 = (h1,0, . . .,h1,L�1, 0. . ., 0)
T denote the wavelet filter

coefficients of a Daubechies compactly supported wavelet for unit

scale [Daubechies, 1992, chapter 6] with 0 padded to length N by

defining h1,l = 0 for l � L. A wavelet filter must satisfy the

following three basic properties:

XL�1

l¼0

h 1;l ¼ 0; ð8Þ

XL�1

l¼0

h21 ;l ¼ 1; ð9Þ

and for all nonzero integers n

XL�1

l¼0

h1;lh1;lþ2n ¼ 0: ð10Þ

That is, a wavelet filter must sum to 0 (have zero mean), must

have unit energy, and must be orthogonal to its even shifts. The

most simple example of a wavelet filter h1 is the Haar wavelet

given by

h1;0 ¼
1ffiffiffi
2

p and h1;0 ¼
�1ffiffiffi
2

p ð11Þ

and is equivalent to a Daubechies extremal phase wavelet filter of

length L = 2 (we denote this family of wavelets as ‘‘D(L)’’ for

length L).

[19] Let

H1; k ¼
XN�1

l¼0

h1; le
�i2plk=N ; k ¼ 0; :::;N � 1; ð12Þ

be the discrete Fourier transform of h1, also known as the transfer

or gain function. Let g1 = (g1,0, . . ., g1,L�1, 0, . . ., 0)
T be the zero

padded scaling filter coefficients, defined via g1,l = (�1)l + 1h1,L�1�l

for l = 0, . . ., L�1, and let G1,k denote its gain function. The gain

function H1 of the Haar wavelet (equation (11)) indicates which

frequencies are associated with this filter. Figure 3 shows the real-

valued squared gain functions H1 = |H1|
2 and G1 = |G1|

2 for the

Haar wavelet and scaling filters, respectively. An ideal high-pass

filter would only capture frequencies 1/4 < f < 1/2, but the Haar

wavelet filter is a very poor approximation to this ideal filter.

Hence frequencies <1/4 are also given positive weight. When

filtering a time series via the DWT and using the Haar wavelet

filter, significant amounts of low-frequency content may leak into

the resulting wavelet coefficients. To overcome this problem, and

to obtain better frequency resolution, Daubechies [1992] devel-

oped methods to produce compactly supported wavelets of various

lengths. For example, the D(4) wavelet is given by

h1;0 ¼
1�

ffiffiffi
3

p

4
ffiffiffi
2

p ; h1;1 ¼
�3þ

ffiffiffi
3

p

4
ffiffiffi
2

p ;

ð13Þ

h1;2 ¼
3þ

ffiffiffi
3

p

4
ffiffiffi
2

p ; and h1;3 ¼
�1�

ffiffiffi
3

p

4
ffiffiffi
2

p :

Figure 3 shows the squared gain functions for the D(4) wavelet and

scaling filters. Their approximation to ideal band-pass filters is

improved over the Haar wavelet and scaling filters. Further

improvements in frequency resolution may be found by using even

longer wavelets.

Figure 2. Spectral density functions for fractional difference (FD)
processes with long memory parameter d 2 {0.05, 0.25, 0.4, 0.45}.
The x axis is displayed on the log2 scale, and the y axis is in decibels.
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[20] Working from the unit-scale wavelet filter h1, one may

obtain a wavelet filter associated with higher scales (lower

frequencies) using a simple recursion in the frequency domain.

Define the length N wavelet filter hj for scale tj = 2j�1 as the

inverse DFT of

Hj;k ¼ H1;2 j�1k mod N

Yj�2

l¼0

G1;2l k mod N ; ð14Þ

k = 0, . . ., N�1, where ‘‘k mod N’’ stands for ‘‘k modulo N’’ and

forces the assumption of periodicity on the gain functions. When

N > Lj = (2 j�1)(L�1) + 1, the last N�Lj elements of hj are zero, so

the wavelet filter hj has at most Lj nonzero elements. At each scale j

the wavelet filter hj is capturing smaller and smaller portions of

low-frequency content from the original signal and thus approx-

imates an ideal band-pass filter with passband f 2 [1/2 j+1, 1/2 j].

Also, let us define the scaling filter gJ for scale tJ as the inverse

DFT of

GJ ;k ¼
YJ�1

l¼0

G1;2l k mod N ; k ¼ 0; :::;N � 1: ð15Þ

After applying a succession of wavelet filters for scales j = 1,

. . ., J, the scaling filter captures the remaining low-frequency

content from the signal and approximates an ideal low-pass filter

with passband f 2 (0, 2 j+1). Whereas wavelet coefficients

associated with band-pass filters will have mean zero, under

appropriate assumptions of the underlying spectrum of the

process the scaling coefficients will contain the mean of the

process.

[21] Let Y0, . . ., YN�1 be a time series of length N. For scales

such that N � Lj we can filter the time series using hj to obtain the

wavelet coefficients

Wj;t ¼ 2j=2eWj;2 j tþ1ð Þ�1

and

L� 2ð Þ 1� 1

2 j

� �	 


 t 
 N

2j
� 1

� �
; ð16Þ

where

eWj;t ¼
1

2j=2

XLj�1

l¼0

hj;lYt�l; t ¼ Lj � 1; :::;N � 1: ð17Þ

The Wj,t coefficients are obtained by downsampling every 2 jth

value of the eWj,t coefficients, which form a portion of one version of

a ‘‘nondecimated’’ DWT called the ‘‘maximal overlap’’ DWT (see

Percival and Guttorp [1994] and Percival and Mofjeld [1997] for

more details on this transform). Other versions of the nondecimated

DWT are discussed by Shensa [1992], Coifman and Donoho

[1995], Nason and Silverman [1995], and Bruce and Gao [1996].

[22] The Wj,t coefficients derived from a Daubechies family of

wavelets are associated with generalized differences (changes) on a

scale of length tj. For example, the unit-scale Haar DWTcoefficients

W1,t are differences of adjacent observations in the original series

W1;t ¼ Y2tþ1 � Y2tð Þ=
ffiffiffi
2

p
; t ¼ 0; 1; :::;N=2� 1; ð18Þ

and hence may be thought of as changes at a scale of length

t1 = 21�1 = 1. The Haar DWT coefficients at the second scale

are computed via

W1;t ¼ Y4tþ3 þ Y4tþ2ð Þ � Y4tþ1 þ Y4tð Þ½ �=2; ð19Þ

t = 0,1, . . ., N/4 � 1, and correspond to differences of adjacent

averages at a scale of length t2 = 22�1 = 2. This analogy proceeds for

all positive levels j of the DWT that correspond to changes at scales

of lengths tj = 2 j�1. Thus when referring to a particular set of DWT

coefficients, the terms ‘‘level j’’ and ‘‘scale tj’’ are equivalent. The
exception is the scaling coefficients from the final level of the DWT

VJ,t coming from the application of gJ to Yt. They capture the low-

frequency content of the process and are associated with weighted

averages at a scale of length 2tJ.
[23] In practice, the DWT is implemented via a pyramid

algorithm [Mallat, 1989] illustrated in Figure 4. First, the data

vector Y = (Y0, Y1, . . ., YN�1)
T is convolved with the filters h1 and

g1, whose gain functions are given by equation (14) and denoted

by H1 and G1, respectively. The resulting filtered series are reduced

to half their original lengths via downsampling by two. The

downsampled output from the h1 filter is the length N/2 vector

of wavelet coefficients W1, and the downsampled output from the

g1 filter is the length N/2 vector of scaling coefficients V1. The

vector of scaling coefficients V1 is filtered and downsampled

again, using h1 and g1, to yield the length N/4 vectors W2 and

V2, respectively. The scaling coefficients are recursively filtered

and downsampled until only one wavelet coefficient WJ and one

scaling coefficient VJ remain. All wavelet coefficient vectors and

Figure 3. Squared gain functions for the wavelet and scaling
filters from the Haar and D(4) families of compactly supported
wavelets. The dotted lines represent the frequency interval
associated with an ideal high-pass filter for the wavelet filter and
an ideal low-pass filter for the scaling filter.
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the final scaling coefficient are kept and may be organized into the

length N vector W = (W1, W2, . . ., WJ�1, WJ, VJ)
T, where Wj is a

length N/2j vector of wavelet coefficients associated with changes

on a scale of length tj = 2j�1. A simple modification to the pyramid

algorithm for computing DWT coefficients, namely, not down-

sampling the output at each scale and inserting zeros between

coefficients in h1 and g1, yields the algorithm for computing eWj,t,

as described by Percival and Mofjeld [1997].

[24] An additive decomposition of Y0, . . ., YN�1 may be

obtained by performing a multiresolution analysis (MRA) on the

observed process. We concentrate on an MRA based on the

nondecimated DWT since the particular shape of the wavelet filter

used does not heavily influence the results. Once the nondecimated

DWT has been performed, simply convolve the eWj,t coefficients

with hj to produce the wavelet detail

eDj;t ¼
1

2j=2

XN�1

l¼0

hj;l eWj;tþl mod N ; ð20Þ

where t = 0,1, . . ., N�1. Convolving the eVJ,t coefficients with gJ
produces the wavelet smooth

eSj;t ¼
1

2 j=2

XN�1

l¼0

gJ ;leVJ ;tþl mod N ; ð21Þ

where t = 0,1, . . ., N�1. The subseries eDj and eSJ in an MRA form

an additive decomposition of the original time series via

Yt ¼
XJ
j¼1

eDj;t þ eSJ ;t: ð22Þ

Each subseries eDj is associated with changes at scale tj = 2 j�1,

while eSJ is associated with weighted averages over scales of 2
J (see

Percival and Mofjeld [1997] for more details).

3.2. The DWT of Long Memory Processes

[25] The ability of the wavelet transform to decorrelate time

series, such as long memory processes, producing DWT coeffi-

cients for a given scale that are approximately uncorrelated is well

known [see, e.g., Tewfik and Kim, 1992;McCoy and Walden, 1996;

Wornell, 1996]. Here we explore the output of the DWT when

applied to an FD process in terms of the SDF of the DWT

coefficients.

[26] Let Yt be an FD process with SDF given by equation (4)

and 0 < d < 1/2. We know that the DWT coefficients W1,0, . . .,
W1,N/2 for unit scale are simply the original time series convolved

with the wavelet filter h1 and downsampled by 2. The SDF of a

downsampled process, say Ut = Y2t, is given by

SU fð Þ ¼ 1

2
SY

f

2

� �
þ SY

f þ 1

2

� � �
: ð23Þ

We also know from basic Fourier theory that filtering a time series

corresponds to a multiplication of its spectrum with the squared

gain function of that filter. Hence the filtered coefficients h1 * Yt
(where the asterisk denotes the convolution operator) have SDF

given by H1( f )SY ( f ), and the spectrum of the unit-scale DWT

coefficients W1,0, . . ., W1,N/2 is therefore

SY ;1 fð Þ ¼ 1

2
H1

f

2

� �
SY

f

2

� �
þH1

f þ 1

2

� �
SY

f þ 1

2

� � �
: ð24Þ

From equation (24) the spectrum of W1,t is the average of two

stretched pieces of the filtered spectrum. This averaging is

important because it causes SY,1( f ) to be much more flat than the

filtered spectrum.

[27] For the class of Daubechies compactly supported wavelets

a closed form expression exists for H1( f ), namely,

H Dð Þ
1 fð Þ ¼ 2sinL pfð Þ

XL=2�1

l¼0

L=2� 1þ l

l

� �
cos2l pfð Þ

¼ D L
2 fð ÞC fð Þ ð25Þ

[Daubechies, 1992, chapter 6.1], where D( f ) = |2sin(pf )|2 is the

squared gain function of a first order backward difference filter and

C fð Þ ¼ 1

2L�1

XL=2�1

l¼0

L=2� 1þ l

l

� �
cos2l pfð Þ: ð26Þ

Substituting equations (4) and (25) into equation (24) gives us

S
Dð Þ
Y ;1 fð Þ ¼ 1

2


DL

2
f

2

� �
C f

2

� �
SY

f

2

� �
þDL

2
f þ 1

2

� �
C f þ 1

2

� �
SY

f þ 1

2

� ��
ð27Þ

¼ 1

2


D� d�L

2ð Þ f

2

� �
C f

2

� �

þD� d�L
2ð Þ f þ 1

2

� �
C f þ 1

2

� ��
: ð28Þ

The squared gain function D� d�L
2ð Þ fð Þ corresponds to an FD

process with long memory parameter d � L
2
and C( f ) is the squared

gain function of a filter with compact support. Figure 5 shows the

SDFs for the filtered processes h1 * Yt and the unit-scale DWT

coefficients when Yt is an FD process with d = 0.4. Although the

spectrum of the FD process rapidly approaches infinity as f ! 0,

the unit-scale wavelet filter removes most low-frequency content

f < 1/4. The downsampling inherent in the DWT then averages the

Figure 4. Flow diagram illustrating the decomposition of a
discrete time series Y into the unit-scale wavelet coefficients W1

and the unit-scale scaling coefficients V1. The time series Y is
filtered using the wavelet filter with gain function H1 and every
other value removed (downsampled by 2) to produce the length
N/2 wavelet coefficient vector W1. Similarly, Y is filtered using
the scaling filter with gain function G1 and is downsampled to
produce the length N/2 vector of scaling coefficients V1.
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two halves of the filtered SDF and results in a spectrum that is

difficult to distinguish from a white noise model (i.e., constant).

[28] As an example, consider the spectrum of DWT coefficients

at unit scale for an FD process analyzed using the Haar wavelet. It

is relatively simple to calculate since H1
Haar( f ) = 2sin2(p f ). The

SDF of the filtered FD process h1 * Yt is given by

HHaar
1 fð ÞS fð Þ ¼ 1

2
2sin pfð Þj j�2 d�1ð Þ: ð29Þ

That is, the SDF of the filtered process is proportional to an FD

process with parameter d0 = d�1. Since we were looking at so-

called ‘‘red’’ processes (where the spectral energy is dominated by

low frequencies) with 0 < d < 1/2, this means �1 < d0 < �1/2, and

hence the filtered process is ‘‘blue’’ (with spectral energy

dominated by high frequencies). The spectrum of the DWT

coefficients using the Haar wavelet is therefore

SHaarY ;1 fð Þ ¼ 1

4
2 sin

pf
2

� ����� �����2 d�1ð Þ
"

þ 2cos
pf
2

� ����� �����2 d�1ð Þ
#
: ð30Þ

Figure 6 gives the SDFs for the unit-scale Haar DWT coefficients

applied to FD processes with 0 
 d 
 0.45. When d = 0, Yt is a

white noise process, and the SDF of the Haar DWT coefficients for

unit scale does not depend on f and therefore is also a white noise

process. As d increases, the spectrum of the Wj,t coefficients

deviates from that of white noise, with energy deficient in low-

frequency content and slightly dominated by the higher frequen-

cies, but the total variation in the SDF is relatively low (between 1

and 2 dB when d = 0.45).

[29] The formula given in equation (24) may be extended to an

arbitrary scale tj using a simple recursive relation (see Appendix A).

Figure 5. Spectral density functions for (left panels) an FD process Yt with d = 0.4, (center panels) the filtered
process h1 * Yt using the Haar, D(4), and LA(8) wavelet filters, and (right panels) unit-scale wavelet process W1,t

using the Haar, D(4), and LA(8) wavelet filters. The y axis for all plots is plotted on a decibel scale.

Figure 6. Spectral density functions (in decibels) for wavelet
processes Wj,t using the Haar wavelet filter from FD processes
with, from top to bottom, d 2 {0, 0.05, 0.1, . . ., 0.45}.
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The SDF for the DWT coefficients Wj;0; . . . ;Wj;N=2 j of an FD

process Yt, associated with scale tj, is given by

S
Dð Þ
Y ;j fð Þ ¼ 1

2 j

X2j�1

k¼0

H Dð Þ
j

f þ k

2j

� �
SY

f þ k

2j

� �
; ð31Þ

where

H Dð Þ
j fð Þ ¼ DL

2 fð Þ
Yj�2

k¼0

4cos2 2kpf
� �" #L

2

�C 2j�1f
� �

G Dð Þ
j�1 fð Þ: ð32Þ

That is, the SDF of the filtered process is stretched by 2j, and then

2j�1 aliased versions are added to it. This can intuitively be seen

through successive applications of equation (23) to the filtered

spectrum.

[30] To expand the information contained in Figure 5 to all

possible values of d 2 [0,1/2) and across wavelet scales, a useful

measure to introduce is the dynamic range of a spectrum, defined

to be

10� log10
maxf S fð Þ
minf S fð Þ

� �
: ð33Þ

Table 1 gives the maximum dynamic ranges, in decibels, for the

spectra of DWT coefficients applied to FD processes with long

memory parameter 0 < d < 1/2. As the level of the DWT

increases, the wavelet filter is capturing smaller and smaller

ranges of low-frequency content. Even though the SDF of a

stationary FD process with d 2 [0,1/2) goes to infinity as f ! 0,

the wavelet filter adapts to these rapid changes so that the

dynamic range of the SDF of Wj,t is negligible and appears to

level off around 3 dB regardless of the wavelet filter used. This

lack of dynamic range, which corresponds to almost uncorrelated

observations in the wavelet process, is utilized in the next section

to test for nonstationary events in the presence of long memory

structure.

4. Testing for Homogeneity of Variance

[31] If Y0, . . ., YN�1 constitutes a portion of an FD process with

long memory parameter 0 < d < 1/2, and with possibly nonzero

mean, then each sequence of wavelet coefficients Wj,t for Yt is

approximately a sample from a zero mean white noise process.

This enables us to formulate our test for homogeneity of variance

using wavelet coefficients for FD processes as follows.

4.1. The Test Statistic

[32] Let X0, . . ., XN�1 be a time series that can be regarded as a

sequence of independent Gaussian (normal) random variables with

zero means and variances s0
2, . . ., s2

N�1. We would like to test the

hypothesis

H0 : s20 ¼ � � � ¼ s2N�1: ð34Þ

A test statistic that can discriminate between equation (34) and a

variety of alternative hypotheses (such as H1: s0
2 = � � � = sk

2 6¼ sk + 1
2

= � � � = sN�1
2 , where k is an unknown change point) is the

normalized cumulative sums of squares test statistic D, which has

previously been investigated by, among others, Brown et al.

[1975], Hsu [1977], and Inclán and Tiao [1994]. Let

Pk ¼
Pk

j¼0 X
2
jPN�1

j¼0 X 2
j

; k ¼ 1; . . . ;N � 1; ð35Þ

denote the normalized partial energy sequence of Xt. The desired

test statistic is given by D = max(D+, D�), where

Dþ ¼ max
0
 k
 N�2

k

N � 1
� Pk

� �
ð36Þ

D� ¼ max
0
 k
 N�2

Pk �
k � 1

N � 1

� �
: ð37Þ

[33] The statistic Pk, as formulated in equation (35), is measur-

ing the accumulation of variance in the time series as a function of

time. This quantity is then compared with a line at a 45� angle,

where the maximum vertical deviation from this line is recorded as

our test statistic D. The rationale is that if the observed time series

satisfies H0, then each random variable should contribute the same

amount of variance, and thus Pk will closely follow the 45� line. If
one does not adhere to H0, for example, if the beginning of the time

series exhibits a greater variance than the remainder of the series,

then the first few random variables will contribute too much

variance to Pk and deviate drastically from the 45� line. The

threshold (critical levels) with which to measure the magnitude of

this deviation from the 45� is obtained from standard statistical

theory, a brief summary of which is provided below.

[34] For N > 2, there is no known tractable closed form

expression for the critical levels of D under the null hypothesis.

Brown et al. [1975] obtained critical levels by an interpolation

scheme that makes use of the fact that if N is even and if we group

the squared deviates by pairs, then D reduces to the well-known

cumulative periodogram test for white noise [Bartlett, 1955], for

which critical levels are available [Stephens, 1974]. Hsu [1977]

used two methods, Edgeworth expansions and fitting the first three

moments to a beta distribution, in order to obtain small sample

critical levels for a statistic equivalent to D. Let P{X 
 x} denote

the probability that the random variable X is less than or equal to a

constant x. The results of Inclán and Tiao [1994] indicate that, for

large N and x > 0,

P
ffiffiffiffiffiffiffiffiffi
N=2

p
D 
 x

n o
� P sup

t
B0
t

�� �� 
 x

� �

¼ 1þ 2
X1
l¼1

�1ð Þle�2l 2x 2

; ð38Þ

Table 1. Maximum Dynamic Range for the SDF of DWT

Coefficients When Applied to FD Processes with Long Memory

Parameter d 2 [0, 1/2]a

Level Haar D(4) LA(8)

1 1.48 1.56 1.59
2 2.26 2.56 2.71
3 2.71 2.93 3.00
4 2.87 3.07 3.14
5 2.93 3.10 3.16
6 2.95 3.10 3.16

aValues given in decibels.
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where Bt
0 is a Brownian bridge process, and the right-hand

expression is from Billingsley [1968, equation (11.39)].

[35] Critical levels for D under the null hypothesis can be readily

obtained throughMonte Carlo simulations. The procedure presented

here is to generate empirical critical values for the cumulative sum of

squares test statistic D applied to the first scale of wavelet coef-

ficients from the Haar wavelet filter. The procedure is as follows:

1. Generate an N-length realization of a Gaussian white noise

process.

2. Compute the DWT down to scale J using the Haar wavelet

filter.

3. Discard all wavelet coefficients at each scale that make

explicit use of the periodic boundary conditions.

4. Compute the test statistic D for all scales on the basis of the

remaining wavelet coefficients.

5. Calculate the value of D such that 100% (1�a) simulated

values are greater than that value. This is the (1�a)th quantile.

[36] Table 2 provides Monte Carlo critical levels for comparison

with levels determined by a Brownian bridge process. The standard

error (SE) is provided for each estimate and was computed via

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ
10; 000f 2

s
; ð39Þ

where f is the histogram estimate of the probability density function

(PDF) at the (1�a)th quantile using a bandwidth of 0.01 [Inclán

and Tiao, 1994]. That is, the variability of the empirical PDF at a

specific quantile is estimated by looking at all values from the

simulation within a small interval around that quantile. Quantiles

of a Brownian bridge process are given at the far right. Since

equation (37) is an asymptotic statement, it is of interest to

compare critical levels on the basis of Monte Carlo simulations of

small sample sizes with these asymptotic critical levels. This

provides insight into how quickly the Monte Carlo critical values

converge to their asymptotic values. As we can see, there appears

to be a slow but steady convergence as the sample size increases.

4.2. Simulation Study Using the DWT

[37] Here we investigate whether, in fact, the DWT of an FD

process is a good approximation to white noise as far as performance

of the test statistic D is concerned. We first note that the autocovar-

iance between two wavelet coefficients in the same scale is

Cov Wj;t;Wj;tþt
� �

¼
XLj�1

m¼� Lj�1ð Þ
sY ;2jtþm

�
XLj� mj j�1

l¼0

hj;lhj;lþ mj j; ð40Þ

where sY,t was previously defined in equation (5a). Appendix B

provides a derivation for equation (40). Using equation (40), we

may compute the unit lag correlations

Corr Wj;t;Wj;tþ1

� �
¼

Cov Wj;t ;Wj;tþ1

� �
Var Wj;t

� � ð41Þ

given in Table 3 for the Haar, D(4), and LA(8) wavelet filters and

scales 1, 2, 4, and 8 (here ‘‘D(4)’’ and ‘‘LA(8)’’ refer to the

Daubechies extremal phase filter with 4 nonzero coefficients and to

her least-asymmetric filter with 8 coefficients, respectively)

[Daubechies, 1992]. Note that all unit lag correlations are negative,

with departures from 0 increasing somewhat as j increases.

[38] Computations indicate that |Corr{Wj,t, Wj,t+2}| < 0.033

and |Corr{Wj,t, Wj,t+3}| < 0.009 for all three wavelet filters, and

Corr{Wj,t, Wj,t+t} is negligible for t � 4. To ascertain the effect

of these small remaining correlations on D, we determined the

upper 10%, 5%, and 1% quantiles for the distribution of D on

the basis of a large number of realizations of white noise for

sample sizes commensurate with time series of length N 2 {128,

256, 512, 1024, 2048, 215}. Using these quantiles, we then

generated a large number of realizations of length N from FD

processes with d 2 {0.05, 0.25, 0.4, 0.45}; computed wavelet

coefficients for scales 1, 2, 4, and 8 using the three wavelet

filters; computed the test statistic D for all four scales on the

basis of the wavelet coefficients; and compared the resulting D’s

to the white noise critical levels (full details about this Monte

Carlo study are given by Whitcher [1998]). We found the

deviations between the actual rejection rates and the rates

established for white noise to be generally �10%, with the

agreement decreasing somewhat with increasing scale (this is

consistent with Table 3).

[39] Table 4 shows a small portion of the simulation study by

Whitcher [1998], providing rejection rates when testing for homo-

geneity of variance on a stationary FD(0.4) process with no

variance change. The test statistic D was applied to raw time series

of various lengths to correspond with the sample sizes from

applying the DWT to an FD(0.4) process of length 128. The

rejection rates from the wavelet-based procedure closely follow the

nominal rejection rate a = 0.05 when using the Monte Carlo critical

values from Table 2 and are more conservative than a = 0.05

if asymptotic critical values are used. The effect of serial correla-

tion from short memory (ARMA) time series models on test

statistics similar to D is also an increase in the type 1 error or

probability of false positives [Johnson and Bagshaw, 1974; Tang

and MacNeill, 1991]. By testing the output from the DWT, we are

protecting against any time series model with positive autocorre-

lations at small to large lags.

[40] From these simulation studies we may conduct an approx-

imate a-level test for variance homogeneity of an FD process, on a

scale by scale basis, by simply using critical levels determined

Table 2. Monte Carlo Critical Values With Standard Errors for the

Test Statistic
ffiffiffiffiffiffiffiffiffi
N=2

p
D Using the Haar Wavelet Filter for a Level-a

Testa

a

Sample Size

8 16 32 64 128 256 512 1024 1
0.10 1.109 1.135 1.157 1.182 1.193 1.197 1.206 1.209 1.224
SEb 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 –
0.05 1.232 1.265 1.293 1.313 1.326 1.329 1.345 1.341 1.358
SE 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 –
0.01 1.459 1.508 1.553 1.584 1.596 1.596 1.630 1.617 1.628
SE 0.007 0.008 0.008 0.009 0.008 0.010 0.008 0.007 –

aValues are based upon 10,000 replicates.
bSE denotes standard errors.

Table 3. Lag-One Autocorrelations for Wavelet Coefficients of

Scales 1, 2, 4, and 8 for an FD Process With d = 0.45 Using the

Haar, D(4), and LA(8) Wavelet Filters

Scale Haar D(4) LA(8)

1 �0.0626 �0.0797 �0.0767
2 �0.0947 �0.1320 �0.1356
4 �0.1133 �0.1511 �0.1501
8 �0.1211 �0.1559 �0.1535
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under the assumption of white noise. No significant difference was

detected between the unique wavelet filters used [Whitcher, 1998].

Thus the shorter wavelet filters (e.g., Haar or D(2)) are just as

effective as the longer filters even though they do not have the

same frequency resolution. This is important since longer wavelet

filters, although more appropriate for nonstationary processes with

stationary differences because the extra implicit differencing oper-

ations ensure that the wavelet coefficients form a stationary process

with zero mean, produce more boundary coefficients that must be

discarded when constructing D via equations (35) and (36), thereby

reducing the power of the statistical test.

[41] One may not want to perform Monte Carlo studies in order

to obtain critical values for the test statistic D. The simulation study

described above was run again substituting the asymptotic critical

values (Table 1) for the Monte Carlo critical values. For sample

sizes >128 the percentage of times D exceeded the asymptotic

critical levels was within 10% of the theoretical quantile. The Haar

wavelet filter was found to be conservative for all sample sizes,

that is, the percentage of times D exceeded the asymptotic critical

levels was below the nominal percentile. Hence wavelet coeffi-

cients of length 128 or greater using asymptotic critical values will

give reasonable results if Monte Carlo critical values have not been

computed.

[42] To investigate how well this approximation performs for

large sample sizes, a similar procedure to the one outlined above

was performed for FD processes of length N = 215 = 32,768 using

the Wj,t coefficients for j = 1, . . ., 8. Owing to the computational

time involved, the procedure was only repeated 1000 times. The

percentages of times that D exceeded the asymptotic white noise

critical levels under these conditions were found to be quite close to

the nominal rejection rates with increased variability due to the

reduced number of iterations in the Monte Carlo study. Thus all of

the simulation studies we have conducted to date indicate that the

DWT adequately decorrelates long memory processes for the

purpose of using the test statistic D, even for sample sizes as large

as 215.

4.3. Application to the Nile River Water Levels

[43] As an example of a time series exhibiting both long

memory and possible inhomogeneity in variance, we consider

the Nile River minimum water level time series [Toussoun, 1925].

For an interesting recent analysis of this series we direct the

reader to Eltahir and Wang [1999]. The full historical record

from Toussoun spans 622–1925 A.D. with several gaps. There

are 5 portions that exceed 30 years in length. The longest consists

of N = 663 yearly values from 622 to 1284 A.D. and is plotted in

Figure 1. Beran [1994, p. 118] found an FD model to fit this time

series well and obtained an estimate of d = 0.40 using an

approximate maximum likelihood approach.

[44] Figure 7 shows a wavelet-based MRA of Nile River

minimum water levels via equation (22). Each wavelet detail eDj

is associated with changes at scale tj = 2j�1, while eSJ is associated

with weighted averages over scales of 2tJ. We used the D(4)

wavelet in conjunction with the nondecimated DWT, extended to N

coefficients at each scale by assuming periodic boundary condi-

tions. Visually, it appears that there is greater variability in changes

on scales of 1 and 2 years prior to 722 A.D., but not on longer

scales. Beran [1994, section 10.3] investigated the question of a

change in the long memory parameter in this time series by

partitioning the first 600 observations into two subseries containing

the first 100 and the remaining 500 measurements, respectively.

Maximum likelihood estimates of the long memory parameter d

were quite different between the two subseries, 0.04 and 0.38,

respectively. This analysis suggests a change in d, a conclusion

also drawn by Beran and Terrin [1996] using a procedure designed

to test for change in the long memory parameter.

[45] We can perform a similar analysis using the wavelet

variance, which decomposes the variance of Yt on a scale by scale

basis. The wavelet variance nj
2 for scale tj = 2j�1 is defined to be

the variance of eWj,t and may be estimated by

en 2
j ¼

1

N � Lj þ 1

XN�1

l¼Lj�1

eW 2
j;l ; ð42Þ

see Percival [1995] for a discussion of the statistical properties of

this estimator. The estimated wavelet variances and approximate

confidence intervals (derived in Appendix C), given a partitioning

Figure 7. Multiresolution analysis of the Nile River minimum
water levels using the D(4) wavelet filter and maximal overlap
DWT. The top plot of the figure is the series itself, while the five
time series plotted below it constitute an additive decomposition of
the series into components associated with, from top to bottom,
variations on scales of 1 year (eD1), 2 years (eD2), 4 years (eD3), 8
years (eD4), and 16 years or longer (eS4). The vertical dotted line
splits the series into two parts: the first 100 observations (622–721
A.D.) and the remaining 563 observations (722–1284 A.D.).

Table 4. Comparison of Rejection Rates When Testing for

Homogeneity of Variance Using a Stationary FD(0.4) Processa

N Raw

Monte Carlo Asymptotic

Haar D(4) LA(8) Haar D(4) LA(8)

64 0.261 0.065 0.044 0.054 0.035 0.031 0.049
32 0.140 0.063 0.051 0.047 0.029 0.047 0.040
16 0.061 0.052 0.053 0.036 0.029 0.025 0.025
8 0.031 0.036 0.045 – 0.016 0.007 –

aThe test statistic D is applied to raw time series of length N, and the first
four levels of the DWT is applied for an FD(0.4) process of length 128
(using both Monte Carlo and asymptotic critical values). All tests are
performed at the a = 0.05 level of significance. At the smallest sample size
the output from an LA(8) DWT produces only two coefficients unaffected
by the boundary, and thus the test statistic was not computed.
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scheme similar to the one used by Beran [1994], are displayed in

Figure 8. Confidence intervals are equivalent to statistical

hypothesis testing at the a level of significance. Thus, since 95%

confidence intervals for scales of 1 and 2 years do not overlap, we

must reject the null hypothesis that the two wavelet variances are

equal at the a = 0.05 level of significance. This suggests that the

greater variability seen in the first 100 years might be attributable

to changes in variance at just these two scales.

[46] For an FD process we have nj
2 / tj

2d�1, so we can estimate

d by performing a simple linear regression of log v 2
j~ on log tj and

by using the estimated slope from the regression b̂ to form

d̂ ¼ 1
2

b̂þ 1
� �

. This yields estimates of d̂ = 0.38, 0.42, and

�0.07 for the whole time series, the last 563 observations, and

the first 100 observations, respectively. These compare favorably

with Beran’s values of 0.40, 0.38, and 0.04, but Figure 8 indicates

that the smaller value for d̂ in the first 100 years is due to increased

variability at scales of 2 years or less. The observed difference in ~v2j
at longer scales between the first and last portions of the time series

is consistent with sampling variability.

[47] Let us now apply the methodology developed in this paper

to the Nile River minima from 622 to 1284 A.D. Using all N = 663

values in the time series, we computed our test statistic for scales of

1, 2, 4, and 8 years on the basis of 331, 115, 57, and 28 wave let

coefficients, respectively. The results from the test, shown in

Table 5, confirm an inhomogeneity of variance at scales of 1 and

2 years but fail to reject the null hypothesis of variance homoge-

neity at scales of 4 and 8 years. Since long memory is a character-

istic associated with lower frequencies and variance change is

associated with higher frequencies, we infer that there has not been

a change in the d but instead a change in the variance of the Nile

River series.

[48] Although the time series of Nile River minimum water

levels from 622 to 1284 A.D. is the longest continuous record,

there are four additional sections of Toussoun’s account that span

more than 30 years. They are plotted in Figure 9 and span the years

1320–1362 A.D. (N = 43), 1364–1433 A.D. (N = 70), 1435–1470

A.D. (N = 36), and 1839–1921 A.D. (N = 83). We propose to

analyze these four time series in order to show that our method-

ology is reasonable for hydrological records of lengths more

commonly found in practice. Exploratory data analysis was per-

formed via computing the sample auto correlation function (ACF)

r̂Y ;t ¼
PN�1�t

t¼0 YtYtþtPN�1
t¼0 Y 2

t

; t ¼ 0; 1; . . . ;N � 1 ð43Þ

for each time series. Approximate 95% confidence intervals are

provided (dashed lines in Figure 9) under the assumption of

Gaussian white noise and are given by

� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
N � t

p

N
ð44Þ

[Fuller, 1996]. The ACFs for all four time series fall outside these

limits at several lags. A portmanteau test of the ACF for no serial

correlation [Ljung and Box, 1978] was also performed on the four

time series and was rejected at the a = 0.05 level of significance all

four times. Testing homogeneity of variance using a procedure that

assumes uncorrelated Gaussian random variables is not appropriate

here. Since the lengths of these series are relatively short, we are

not assuming they are realizations of FD processes, but rather, they

are reasonably smooth across frequency intervals corresponding to

the DWT. Thus we may assume that the DWT coefficients are

approximately uncorrelated and are able to apply our wavelet-

based test for homogeneity of variance on the wavelet coefficients.

[49] A Haar MRA was performed on each of the four series in

Figure 9. The only series that indicated a potential change in

variance was 1435–1470 A.D., where increased activity was

observed in the DWT coefficients before 1450. The monotonic

trend in 1839–1921 A.D. is removed by the fact that Daubechies

compactly supported wavelets eliminate polynomial functions of

order p = L/2 from all levels of wavelet coefficients [Daubechies,

1992]. Thus the Haar or D(2) wavelet eliminates linear trends

while the D(4) wavelet removes quadratic trends and so on. An

analysis of the wavelet variance, as in Figure 8, was not performed

for these series. Instead, we move directly to computing the test

statistic D for the first two scales of the Haar DWT for each series.

Table 6 gives the tabulated values for D, and when
ffiffiffiffiffiffiffiffiffi
N=2

p
D is

compared to the Monte Carlo critical values in Table 2, only the

first scale of the time series spanning 1435–1470 A.D. rejects the

null hypothesis of homogeneity of variance and thus confirms what

the MRA identified previously. These four series indicate that our

wavelet-based methodology for testing homogeneity of variance in

Figure 8. Estimated Haar wavelet variances for the Nile River
minimum water levels before and after 721 A.D. The solid bar is
the point estimate of the wavelet variance, while the shaded strips
are �95% confidence intervals based upon a chi-square approxi-
mation given by Percival [1995].

Table 5. Results of Testing the Nile River Water Levels for

Homogeneity of Variance (622–1284 A.D.) using the Haar

Wavelet Filter With Monte Carlo Critical Valuesa

Scale D 10% Critical
Level

5% Critical
Level

1% Critical
Level

1 0.1559 0.0945 0.1051 0.1262
2 0.1754 0.1320 0.1469 0.1765
4 0.1000 0.1855 0.2068 0.2474
8 0.2313 0.2572 0.2864 0.3436

aAs shown in the table, the test statistic at scale 1 is significant at the 1%
level, and the test statistic at scale 2 is significant at the 5% level. Boldfaced
values are statistically significant at the 0.05 (5%) level.
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a time series with unspecified correlation structure is valid when

the length of the series is <100, a situation commonly encountered

when analyzing yearly hydrological records.

5. Locating the Change in Variance

5.1. Auxiliary Test

[50] We shift our attention to determining the location of a

variance change in the original time series. A naive choice of

location can be based on the test statistic D, i.e., on the location of

the DWT coefficient at which the cumulative sum of squares at

level j achieves its maximum. Since the DWT coefficient Wj,t is a

linear combination of observations from the original series as

illustrated in equations (16) and (17), this procedure will yield a

range of times trapping the variance change. The downsampling

inherent in the DWT, however, causes a loss of resolution in time at

each scale. Thus we propose to use the nondecimated coefficientseWj,t to determine more accurately the location of a variance change

after detection by the DWT.

5.2. Simulation Study

[51] A study was conducted to investigate how well the test

statistic D, now using the eWj,t coefficients, locates a single variance

change in a series with long memory structure. To do this, we

implemented a setup motivated by the Nile River example as

follows: (1) Generate a realization of length N = 663 from an FD

process with specified long memory parameter d = 0.4; (2) Add

Gaussian random variables with s2 = 2.07d to the first 100

observations of the FD process, where 2.07 is the variance sY,0 of

an FD process with d = 0.4 and se
2 = 1 as given by equation (5a); (3)

Compute the eWj,t coefficients for j = 1, . . ., 4 using the Haar, D(4),

and LA(8) wavelet filters; and (4) Record the location of the eWj,t

coefficient from which the test statistic D attains its value, adjusting

for the phase shift of the filter output eWj,t by shifting the location

Lj /2 units to the left (see Percival and Mofjeld [1997] for a

discussion of the phase shift properties of the nondecimated DWT).

[52] The above was repeated 10,000 times each for d 2 {0.5, 1,

2, 3}. Those estimated locations of the variance changes are

displayed in Figure 10 for the first two levels of the wavelet

Figure 9. Nile River minimum water level series after 1284 A.D., each of length N > 30. Autocorrelation functions
(ACFs) with �95% confidence intervals indicate that these time series are not realizations of Gaussian white noise.

Table 6. Test Statistic D for the Nile River Minimum Water

Levels in Figure 9 Using the Haar Wavelet Filtera

Scale 1320–1362
A.D.

1364–1433
A.D.

1435–1470
A.D.

1839–1921
A.D.

1 0.2888 0.1426 0.5790 0.2743
2 0.5830 0.2895 0.4873 0.2793

aWhen
ffiffiffiffiffiffiffiffiffi
N=2

p
D is compared to the Monte Carlo critical values in

Table 2, only the first scale of the time series spanning 1435–1470 A.D.
rejects the null hypothesis of homogeneity of variance.
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transform. The columns of Figure 10 correspond to different wavelet

filters, the D(4), Haar, and LA(8). The rows correspond to the ratio of

the variance between the first 100 observations and those after,

ranging from 1.5:1 to 4:1. Each element of Figure 10 contains two

box and whisker plots summarizing the distribution of change point

locations for the simulation study. The dot is the median, the left and

right sides of the box are the lower and upper quartiles, and the

‘‘whiskers’’ are drawn at 1.5 times the quartiles. All observations

outside the whiskers are drawn as individual points.

[53] The estimates are roughly centered around the 100th wave-

let coefficient for levels j = 1,2 (scales t1 and t2) with the spread

narrowing as the variance ratio increases. There is a very slight

difference between wavelet filters, the broader spread being asso-

ciated with the longer wavelet filters. However, for variance ratios

of 2:1 or greater, all three wavelets appear to perform equally well.

The estimates from level j = 1 (scale t1) have a median value closer

to the truth with much less spread at every combination of variance

ratio and wavelet filter when compared to the second level. We

therefore recommend using the unit-scale estimate when trying to

locate an sudden change of variance in a time series.

5.3. Application to the Nile River Water Levels

[54] We apply the above procedure to locate the variance

change in the Nile River minimum water levels spanning 622–

1284 A.D. Figure 11 displays the normalized cumulative sum of

squares as a function of wavelet coefficient for the first two levels.

We see a sudden accumulation of variance in the first 100 years

and a gradual tapering off of the variance (by construction the

series must begin and end at 0). The maximum is actually attained

in 720 A.D. for the eW 1,t (level 1) coefficients and 722 A.D. foreW 2,t (level 2) coefficients. The subsequent smaller peaks occurring

in the 9th century are associated with large observations, as seen in

the original series, not changes in the variance.

[56] The source document for this series [Toussoun, 1925] and

studies by Popper [1951] and Balek [1977] all indicate the

construction in 715 A.D. (or soon thereafter) of a ‘‘nilometer’’ in

Figure 10. Estimated locations of variance change points for FD processes (N = 663, d = 0.4) using eWj,t with
known variance change at t = 100 (dotted line). From bottom to top the variance ratio between the first 100 and
remaining observations is 1.5:1, 2:1, 3:1, and 4:1. From left to right the wavelet filters are the D(4), Haar, and LA(8).
Under each combination of wavelet filter and variance ratio only the first two levels of the nondecimated DWT are
shown (associated with changes of one and two units, respectively).
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a mosque on Roda Island in the Nile River. After its construction

the yearly minimum water levels up to 1284 A.D. were measured

using either this device or a reconstruction of it in 861 A.D. How

measurements were made prior to 715 A.D. is unknown, but most

likely, devices with less accuracy than the Roda Island nilometer

were used. Our estimated change point at 720 or 722 A.D.

coincides well with the construction of this new instrument, and

it is reasonable that this new nilometer led to a reduction in

variability at the very smallest scales.

[56] For the Nile River minimum water level series spanning

1435–1470 A.D. the maximum of the auxiliary test statistic for theeW 1,t (level 1) coefficients was attained in 1448 A.D. This provides

a nice partition between the more variable beginning of the series

and the quiescent portion later on.

6. Discussion

[57] The discrete wavelet transform has been shown to

adequately decorrelate time series with long memory structure

for the purpose of evaluating a normalized cumulative sum of

squares test statistic. It provides a convenient method for detecting

and locating inhomogeneities of variance in such time series. The

DWT produces a test statistic that can be evaluated under the

assumption of white noise, while the nondecimated coefficientseWj,t offer good time domain resolution for locating a variance

change. This methodology should be a useful analysis tool appli-

cable to a wide variety of physical processes. See Whitcher et al.

[2000b] for an extension to multiple variance changes with

application to a geophysical time series.

[58] Ogden and Parzen [1996] use a test statistic, similar to D, as

a solution to a change-point problem for nonparametric regression.

Their statistic involves estimating the standard deviation of the

squared wavelet coefficients. We avoid this estimation by dividing

the cumulative sum by the total sum of squares (seeWhitcher [1998]

for a discussion on the relative merits of these two approaches).

Whereas we are looking for changes in the variance, they looked at

changes in themean of a process in order to determine an appropriate

level-dependent wavelet threshold. The similarities between the

Ogden-Parzen test statistic and D indicate that, while we have

discussed D in the context of detecting changes in variance, in fact,

D can pick up others kinds of nonstationarities, a fact that must be

taken into account before drawing any conclusion whenD rejects the

null hypothesis of variance homogeneity. Extreme observations

(outliers) or sudden changes in the mean of the process may also

lead to rejections of the null hypothesis. We recommend performing

some exploratory data analysis before applying this methodology.

[59] Beran and Terrin [1996] looked at the Nile River minimum

water levels (622–1284 A.D.) and used a test statistic to argue for

a change in the long memory parameter in the time series. The

results from our analysis, in conjunction with an examination of the

historical record, suggest an alternative interpretation. There is a

decrease in variability at scales of 2 years and less after �720 A.D.,

and this decrease is due to a new measurement instrument rather

than a change in the long-term characteristics of the Nile River.

When analyzing much shorter portions of the Nile River record,

our testing procedure is able to eliminate serial correlation and low-

order polynomial trends while still being able to test for homoge-

neity of variance, thus allowing researchers to perform hypothesis

Figure 11. Nile River minimum water levels (upper panel) and normalized cumulative sum of squares using the eW 1,t

(level 1) and eW 2,t (level 2) coefficients based upon the D(4) wavelet filter for the Nile River minimum water levels
(lower two panels). The vertical dotted line marks the year 715 AD, after which a nilometer on Roda Island was used
to record the water levels.
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tests on observed time series with potentially complicated trend

and correlation structure.

Appendix A: Derivation of Equation (31)

[60] The first step is to separate Hj
(D)( f ) into the product of

D( f ), C( f ) and G( f ) using an equivalent formula to equation

equation (14) for squared gain functions; specifically,

H Dð Þ
j fð Þ ¼ H Dð Þ

1 2j�1f
� �

G Dð Þ
j�1 fð Þ ¼ DL

2 2j�1f
� �

C 2j�1f
� �

G Dð Þ
j�1 fð Þ;

ðA1Þ

where

G Dð Þ
1 fð Þ ¼ 2cosL p fð Þ

XL=2�1

l¼0

L=2� 1þ l

l

� �
sin2l p fð Þ ðA2Þ

is the squared gain function for the Daubechies scaling coefficients.

Using the trigonometric identity, sin2(2f ) = 4sin2( f ) cos2( f ), we

may re-express the first term of equation (A1) via

D 2j�1
� �

¼ D fð Þ
Yj�2

k¼0

4 cos2 p2k f
� �

: ðA3Þ

Since we are downsampling by 2 at each level of the DWT, the SDF

for the DWT coefficients Wj;0; . . . ;Wj;N=2j of an FD process Yt is

given by equation (31), i.e.,

S
Dð Þ
Y; j fð Þ ¼ 1

2 j

X2 j�1

k¼0

H Dð Þ
j

f þ k

2 j

� �
SY

f þ k

2 j

� �
; ðA4Þ

where

H Dð Þ
j fð Þ ¼ DL

2 fð Þ
Yj�2

k¼0

4 cos2 2kp f
� �" #L

2

� C 2j�1f
� �

G Dð Þ
j�1 fð Þ:

ðA5Þ

Appendix B: Derivation of Equation (40)

[61] Let us assume that the wavelet coefficients are not affected

by boundary conditions. We then can write

Wj;t ¼
XLj�1

l¼0

hj;lY2 j tþ1ð Þ�1�l ðB1Þ

with a similar expression for Wj0,t
0. The covariance between Wj,t

and Wj0,t
0 is given by

Cov Wj;t ;Wj0;t0
� �

¼
XLj�1

l¼0

XLj0 �1

l0¼0

hj;lhj0;l0sY ;2 j tþ1ð Þ�l�2 j0 t0þ1ð Þþl0 ðB2Þ

and follows from the covariance function being applied to linear

combinations of random variables with

Cov Y2j tþ1ð Þ�1�l; Y2 j0 t0þ1ð Þ�1�l0

n o
¼ sY ;2 j tþ1ð Þ�l�2 j0 t0þ1ð Þþl0 : ðB3Þ

Consider j = j0 and t0 = t + t. Equation (B3) then becomes

Cov Wj;t;Wj0;t0
� �

¼
XLj�1

l¼0

XLj0 �1

l0¼0

hj;lhj;l0sY ;2jtþl�l0 : ðB4Þ

We can regard the right-hand side of equation (B4) as summing all

elements in a symmetric Lj � Lj matrix, whose (l, l0)th element is

given by hj;lhj;l0sY ;2jtþl�l0 By summing across offset diagonals in

this symmetric matrix, we obtain equation (40).

Appendix C: Confidence Intervals for Equation
(42)

[63] Here we derive an approximate confidence interval for the

estimated wavelet variance using an equivalent degrees of freedom

argument [Priestley, 1981, p. 466]. Instead of a confidence interval

based on the Gaussian distribution for the estimated wavelet

variance, we instead claim that

x~n2j
~n2j

¼d c2
x; ðC1Þ

where cx
2 is a chi-squared distribution with x degrees of freedom

and where ‘‘d¼’’ denotes equal distribution. Using the properties of

the mean and variance of the c2 distribution and appealing to the

large-sample approximations to the mean and variance of ~v2j , we
have the following relation

x¼
N � Lj þ 1
� �

v4j

Aj

; ðC2Þ

where Aj ¼
R 1=2
�1=2 S

2
Wj

fð Þdf [Percival, 1995]. The equivalent

degrees of freedom for the chi-squared distribution may be

estimated via

x̂ ¼
eNj~v

4
j

Abj ; ðC3Þ

where Abj uses the periodogram to estimate the true SDF. The

confidence interval is no longer symmetric under this equivalent

degrees of freedom argument because of the c2 distribution. Let

qx;1�a
2
and qx;a

2
be the lower and upper a/2 quantiles of the c2

distribution with x degrees of freedom, i.e.,

P c2
x 
 qx;1�a

2

h i
¼ P c2

x � qx;1�a
2

h i
¼ a

2
: ðC4Þ

With these quantiles so defined, we have approximately

P qx̂;1�a
2
<

x̂~n2j
n2j

< qx̂;a
2

" #
¼ 1� a; ðC5Þ

and therefore we may define an approximate (1 �a) confidence
interval for nj

2 via

x̂~v2j
qx̂;1�a

2

;
x̂~v2j
qx̂;a

2

" #
; ðC6Þ

where x̂ is estimated via equation (C3) in practice.
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Mallat algorithms, IEEE Trans. Signal Process., 40, 2464–2482, 1992.

Stephens, M. A., EDF statistics for goodness of fit and some comparisons,
J. Am. Stat. Assoc., 69, 730–737, 1974.

Tang, S. M., and I. B. MacNeill, The effect of serial correlation on tests for
parameter change at unknown time, Ann. Stat., 21, 552–575, 1991.

Tewfik, A. H., and M. Kim, Correlation structure of the discrete wavelet
coefficients of fractional Brownian motion, IEEE Trans. Inf. Theory, 38,
904–909, 1992.
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